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Abstract

The unified equations to obtain the exact solutions for piezoelectric plane beam subjected to arbitrary mechanical and electrical loads
with various ends supported conditions is founded by solving functional equations. Comparing this general method with traditional trial-
and-error method, the most advantage is it can obtain the exact solutions directly and does not need to guess and modify the form of
stress function or electric displacement function repeatedly. Firstly, the governing equation for piezoelectric plane beam is derived. The
general solution for the governing equation is expressed by six unknown functions. Secondly, in terms of boundary conditions of the two
longitudinal sides of the beam, six functional equations are yielded. These equations are simplified to derive the unified equations to
solve the boundary value problems of piezoelectric plane beam. Finally, several examples show the correctness and generalization of this

method.
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1. Introduction

Piezoelectric materials have been widely used as actuators
and sensors in deformation and vibration control due to the
coupling between mechanical and electrical fields. Since its
coupling characteristics, it is more complicated for analysis
and design of such intelligent structural system as compared
with traditional structural system. That is the reason why there
are so many numerical models for piezoelectric structure as
can be seen in review papers [1-3]. Since the elasticity solu-
tions for simple form of piezoelectric structure can be re-
garded as the benchmark for verifying the various numerical
models, it has also attracted many scientists and engineers to
do with this problem.

The necessity to guess and modify the form of stress func-
tion and electric displacement function to obtain the elasticity
solutions for piezoelectric plane beam subjected to various
simple form of loads can be seen in almost each paper that
deal with these thesis or related topics. We only list the paper
that published in recent years, such as stress function and elec-

tric displacement function of Egs. (14) and (15) in Ref. [4], Eq.

(16) in Ref. [5], Eq. (17) in Ref. [6], Eq. (16) in Ref. [7], EQs.
(5) and (6) in Ref. [8], Eq. (5) in Ref. [9], Eq. (9) in Ref. [10],
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Eq. (6) in Ref. [11], Eq. (15) in Ref. [12], Eq. (6) in Ref. [13].
Usually, they all need to guess the form of stress function and
electric displacement function before carry out their solution
procedure and can only deal with one specific problem. If the
boundary conditions are changed, whether boundary condi-
tions of the two longitudinal sides or boundary conditions of
the ends supported conditions, the previous assumptions can
not be used. It is also the reason that most of the model given
in these papers are simply supported beam or cantilever beam.
For other type of ends supported conditions, such as Fixed end
— Fixed end piezoelectric plane beam, there are little report
about it. Huang [4] only gives a method of how to solve the
problem when the piezoelectric beam acted by pressure load
that can be transferred into sinusoidal series and need the
value of function which represent the load must be equated to
zero at the two ends of the beam. The assumption about load
in Ref. [4] does not accord with practical conditions. More-
over, the hypothesis of stress function and electrical displace-
ment function in Ref. [4] are not suite for other type of loads,
such as shear force or electrical loads.

This paper considers the behavior of piezoelectric plane
beam subjected to arbitrary mechanical and electrical loads.
Comparing this general method with the method given in the
paper that list in Refs. [4-13], the most advantage is it can
obtain the solutions directly and does not need to guess and
modify the form of stress function or electrical displacement
function. Furthermore, it can deal with arbitrary mechanical
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Fig. 1. Piezoelectric plane beam subjected to arbitrary mechanical and
electrical loads.

and electrical loads, which can not be realized in any open
literature to the best knowledge of the authors.

2. Theoretical formulations

Consider a piezoelectric plane beam with rectangular cross
section subjected to arbitrary loads as shown in Fig. 1. Sup-
pose the width of beam is unit, and the length and height are,
respectively, L and h.

In x-z plane, the constitutive equations for piezoelectric
material can be expressed as Ref. [14]

XX _Sll Sl3 0 o-xx 0 d3l E
Ep (=S S 0 o+ 0 dy {Ex}
gxz 0 0 S44 ze d15 0 ’
i} @
- (o
D, 0 0 dg 6, 0 |(E,
= Gzz +
Dz dSl d33 0 0 533 Ez
- O-XZ
where o, , o, , o, denote the stress components, ¢,

&,, &, arethe strain components, u and w displacement
components, D, and D, electric displacement components,
E, and E, electric field components. s,, s;, S, and
s,, denote coefficients of elastic compliance. d,,, d,, and
d,; are piezoelectricity coefficients. &, and &, are di-
electric impermeability coefficients.

Considering the following boundary conditions of the two

longitudinal sides of the beam

azz(x,+gj=ql(x),
oxz(x,+gj=q2(x),

Dz(x,+gj=qf(x),

O'XZ[X,—gj= a,(x) 2

where q,(x)(i=1234) and q°(x)(i=12) represent the
arbitrary mechanical and electrical loads, respectively.
The kinematic relation are

_ou

ou ow
‘gxx_ ’ =
X

oW
En =7 E Tt
oz 0z O0OX
_ 0% _ 0%

x ox |t oz

©)

where @ represent electrical potential.
The equilibrium equations are

oo, 0o, oo,, 0o,
ox o1z =0 ox oz
4)
oD, oD,
+ =
ox 01

From Eq. (3)1.3 the following compatibility equation is ob-
tained
o*s, 0%s, O's
XX 2 _ Xz . 5
0z>  ox* oxoz ©)

By virtue of Eqg. (1), obtain

gxx = Sllo-xx + S130-22 - d31 8 (DE
oz ©)
oD, oD,
& =530y + 5330, — d33 oz v & =540y — d15 P
od oD
D, =dy0,, —d, (7XE , D, =dyo, +dyo, 59— (7)

The stress components can be expressed by using stress
function U,(x,z) as

_9*U, o°U,

0%V,
XX 2! O-ZZ = 2
0z oX

Lo =Y 8
T = ooz ®

o

Substituting Eq. (8) into Eq. (6) and applying Eqg. (5) ob-
tains

o'u o'u o'u
g TPty gt s 9
D D
g e ta) g, =0

Substituting Eq. (8) into Eq. (7) and applying Eq. (4); ob-
tain

3 3 2 2
3°U o°U, Foe 0 <)1(>2E _0.(10)

A 6231_( o 33)6xzaz_ B 522 d

Differentiating Eq. (10) with respect to z once and com-
bining Eq. (9) to eliminate &°®/(ox*0z) obtains

oD, o'u,

‘U
o7 g T 1

. o'uU,
2 ox2oz?

23 N
ox*

(11)

In this section, the concrete expressions of a; are given in
Appendix A. Letting

Ul(x,z)=w. (12)
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Substituting Eq. (12) into Egs. (9) and (10) obtains

o°uU U o°uU
*u af’2 +(2513+s“4)axza§3 +s33ax“azz
o’ D, _
0x%0z

S0 (13)
_d31ﬁ+(d15_d33)
o*u,

D, D,
077 M ox

‘U
d _( 15~ 33) 2 22
oX“ 0z
(14)

=0.

_533

Integrating Eq. (13) with respectto z once obtains

o*‘U o'u
S“Tz“z +(2s5+ 544)78)(26;2 +5

o*U,
33 4
2 2 ox (15)
0" D, TP _

_d31?+(d15 - d33)? Bt (X)

where f,(x) are arbitrary differentiable function, f(x)
denote the i-th derivative of f,(x).
Combining Egs. (14) and (15) obtains

2 ‘U ‘U ‘U @
asz ~% az42 +a“axzazzz+a“ ax42 raft(x) (18
3D ‘U ‘U ‘U @)
622E =a, 8242 +a226x28222+ » 6x42 +a, £, (x) @17

Differentiating Eqgs. (16) and (17) with respect to z and
x twice, respectively, and letting them equate to each other
obtains

—-dy) 0°U,
07 ox?

U,

oz ox*

U, . (2515 + 44 ) Oy + 5,6, + 20, (dg
oz 511533 - d3'21
(2513 + S44)511 + 533533 - (d15 B dzs)
S'11533 - d321
S350,
511533 - d321 ox°

2
+

(18)

U,

where U, (x,2)=U,(x,z)- f(X)/sy . f(x) can be re-
garded as a assistant function when we derive Eg. (18) and
take no effect hereafter.

Eq. (18) is the governing equation for piezoelectric beam.
The characteristic equation of Eq. (18) is

A= (R + 20+ A3 ) AN+ (A A5 + A28 + AL ) A% = 42322 =0 (19)

where 4, A4,, A, arecharacteristicrootsand A4, =4, # 4,.

The relationship between the characteristic roots and mate-
rial properties can be obtained by comparing Eqg. (19) with
Eq. (18) of the coefficients of A as follows:

(2513 + S44)533 + S11‘511 + 2d31 (d15 - daa)

2, 22492

Al lz /13 S11533 7d321

ﬂlz/lzz +ﬂ,22/132 +/ﬁzﬂ,§ _ (2513 +544)§11 +5335332_(d15 _d33)2 (20)
511533 _d31

533511
A=~
511533 - d321

The general solution of Eq. (18) is

U3(X,z):¢)1(X+Z,12)+¢)2(X—AZ)+¢3(X+ZQZ)

2
v (X B2+ (x4 A2) b gy (x—As2)

where ¢, (-)(i=12,..,6) are six arbitrary functions.

By using Egs. (21), (12) and (8) obtain

( (
+ B[ (x+ 202) - (x- 22) | (22)
[ (

[0 (x+ 42) — 6 (x = 22) (23)
[ A7

]

o, =2 o (x+ A2)+ oY (x-A2) |
- 2[00 (x+ 2,2) + 07 (x= 2,2) | (24)
=20 (x+ 22)+ o (x=22) |

where ¢! (-)denote the i-th derivative of ¢, (-).

By applying Eq. (21), Eq. (12) and integrating Eq. (11)
with respectto z thrice obtains

O = a71|:¢71(2)(x+ ﬁlz)+¢§2)(x_ﬂiz):|
+ a72[¢§2)(x+ ﬂ?z)+¢7§2)(x—ﬂ,zz)J
+ an[(péz)(x+ﬁgz)+(p§2)(x—ﬂgz)J

2

+ fz(x)%+ f,(x)z+ f,(x)

(25)

where f,(x), f;(x) and f,(x) are arbitrary functions.
The displacement and electric displacement components
can be yielded by using Eq. (3)12, Egs. (6) and (7) as

(26)
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w=ay[of? (x+22)+ ol (x-22)]

+a, ¢éz)(x+ﬂgz)+¢é2)(x—ﬂgzﬂ
z
—d33f2(x)?
D, =aq[ 0l (x+ 42) + ¢ (x- 27) ]
g ol (x+ 2,2)+ 47 (x-47) |
+ag[ ol (x+ 22) + 7 (x- 252) |
5t 0% -, 1 ()2 -, (4
D, = [ ¢l (x+22) - " (x- A7)
+ag[ o) (x+ 2,2) -0 (x- 2,2)

—dy, fy(x) 2+ f5(X)

3)

~

where f;(x) and g,(z) are arbitrary functions.
By using Egs. (3)s, (4); (18) and (26)-(29) obtain

2

z
(d15 - d33) fz(l) (X)? + (dls - daa) fs(l) (X)Z + fs(l) (X)

+dyg f‘t(l)(x)_ dzl'[ fz(x)dx+ 91(1)(2) =0

ZZ

8y fz(z)(x)E +0, 12 (X)z+3, f? (X)+ 35, (X)

@7)

(28)

(29)

(30)

31)

Eq. (31) can be regarded as the quadratic algebra equation
with respect to z . Usually, Eq. (31) can only have two roots.
However, Eq. (31) must be satisfied for arbitrary value of z
in the region [-h/2,h/2]. The only possible situation is the
coefficients of z with any degree equate to zero, which im-

ply that

B7()=0, £7(x)=0, 6,£7(x)+5,1,(x)

Integrating Eg. (32) with respectto x twice obtain

f,(x)=Cx+C,, f,(x)=Cx+C,

f4(X):_%

x* X2
[C16+C22]+C7X+C8.

11

Substituting Eq. (33) into Eg. (30) obtain

2

z
gl (z)+(dys— dss)[C12 + Cszj + 10 (x)

Oy X2
—| dy + d15§— Cl? +C,x |—d,,C, +d,;C, =0.

11

(32)

(33)

(34)

Since f;(x) and g,(z) are the single variable functions

of x and z, respectively, which show that

) X3 x2
f =|d,+d, 2| C—+C,—
S(X) [ 31+ 155 j( 1 6 + 3 2]

11

+(d,,Cy —d,;,C, +C;)x+Cy

z 7*
9:(2)=—(ds _dss)[c16+C32J+CGZ +C,

where C,(i=12,..,10) are unknown integral constants.

(35)

(36)

Solutions must satisfy the boundary conditions at the two
longitudinal sides of the beam exactly. By means of Eq. (2),

Egs. (23), (24) and (29) yield six functional equations
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wnere wf)[xm PR ] ( =ty j
ChEc(X): Q1E(X)+[533(C1X+C2)h]/2+ é'33(03)("'04) ) A B) h ) h
U5 () = a5 (X)=[ 855 (Cx+C,)h ] /2+ 5,5 (Cix + C, ) - A 12{ ¢ (X—Fﬁlg_ﬂz ] P4 (X_ﬂi2+/122ﬂ
Aelh=4) h . h
Multiplying Eq. (37) by 4 then minus Eq. (38) obtains ﬂ?(ﬂl—iz)(p [X”izhkgj
_Alh=4) @f,_,h_,h
o (x-ng |-t xe i ]) o -ag ) o
_/13(/114'/13) (3)[ D_ D
e P O BT e e )
3 h h
A M) A8 600 ol x-ag )
25F 7 2 207 '
8 5 AG(x+AN2) (x5 2/2)
Multiplying Eq. (39) by 4 then minus Eq. (40) obtains & (A =22)
_ﬂlqa(x—ﬂih/z)+q4(x—ﬂih/2).
(/,f)(xﬂlhj_ﬂﬂzzﬂ}ﬂf wgs)(x_ﬂ?gj (A= 2)
ﬂj/lz + A h _Ug—ﬂ; @, ,h a4 Multiplying Eq. (37) by 4 then plus Eqg. (38) obtain
e CORR R eV (R I
YR 3>(M j:_zlqg(x)+q4<x>_ [M ] M;Zﬂz (ﬂ? j
2} 227
A2 (3)( j Mg+ 28 3)( 48
Replacing x with x+4h/2 in Eq. (43) and x with 22 aX Ay 2% e j (49
x—A4h/2 inEq. (44), respectively, obtains A= (3>(x— Ej_ﬂlql( )= % (%)
202 % 45)" 222 '
@ () A=A ( Ej
7 (%)= 2% i X+ﬂl e Multiplying Eq. (40) by 4 then plus Eqg. (41) obtain
/Vz”»z h
el ﬂlzﬁzJ a2 ol 4
h 2) 22 2
_Ak zja ¢§3)(x+ﬂif+ﬂgfj (45) X
# 2 A P
,11/13”3 LI Ag A A )
247 2 A= (xmg J A (¥) - (%)
__ﬂlql(x+ﬂih/2)+q2(x+ﬂih/2) 277 " 2%
= 7
Replacing x with x—A4h/2 in Eqg. (48) and x with
(ﬂf)(x) /11/122 % ?s ( —%D—%Dj x+A4h/2 inEq. (49), respectively, obtain
i 2 7?2
LAt A % h h
A (x-ageag) o0 22 x5 12)
A A h h
2 (x-ag- s) MMQ[ L
(At A 3
277 %( ~4 ”35] 43”3 ( bt ) (50)
_ A% (x=Ah/2)+ 9, (x-4h/2) h
ZEE ot (x-ag-ag)
:ﬂqql( —Ah/2)-q ( - 4h/2)

Eq. (45) minus Eq. (46) obtains

2%
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o 0+ e n -7
Aot i)
Mzﬂi ( 2 2] 1
hafeadad
ﬂiq3(x+21h/2) qA(x+ﬁih/2
24}

Eg. (50) minus Eqg. (51) obtains
¢§3)( Aotk j [xmfw “]

el st sl
(el

ﬂsﬂﬁﬂg@z( g

_ah

2

+,)

s»@a

(52)

A (x=Ah/2) + g, (x+ 4h/2
(At o)

_/11Q3(X+/11h/2)+(12(x_
& (A+ %)

A/2)

Multiplying Eq. (37) by ay/4 then minus Eg. (41) ob-

tains
h h
¢§3)[x+ﬁ,z—j—¢f)(x—ﬂ?5j

e LA S G| I

:ﬂlchc( )_ 61Q1( )

aezﬂi - aelﬂz

Multiplying Eq. (39) by ay/4 then minus Eg. (42) ob-
tains
o) (XHQEJ
aez% EY%S D _ D
" 2wk, {‘” [x-23)-o (X%zﬂ &9

— ﬂquC (X) - as1Q3(X) )
3.522-1 - aeﬂz

Replacing x with x+4h/2 in Eqg. (53) and x with
x—Ah/2 inEq. (54), respectively, obtain

w@(xw + 4, ] (xw ~ % j

yah =tk ( h 7]
ka2t -
Ak —ayh ( ﬁih P J
A — aelﬁz
_ At (X+ Ah/2) — a0, (x+ 4h/2)
aez/11_as1/?2
o (x-ag - - (x-a5+ 23]
LBk Bk ( h h)
" a8 oAy (56)
_aesﬁ'l_amﬂago(( /’{1h + )
a62]1_86112 ° 2
:/'{lq';c(x—ﬂlh/Z)—aﬁl%(X—ﬂlh/Z).
a62/1.l_a61/12
Eq. (55) minus Eq. (56) obtains
@) h,,hy_ @f,_,h . h
(2 (X+/115+/125j P (X /112 ﬂzzj
@ h_ b, of,_,h, ,h
Dy (X+ﬁ.l§ 4 )+¢4 (X ﬂ12+/7'22J
ae3/11 A1 s (3 h E
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a63ﬂl aﬁlj? _ D —
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- aez/ll_aelﬂz
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aez/ll_amﬂz
Eq. (57) minus Eqg. (47) obtains
aée{‘pgg)[x"'ﬁq;_/lzgj [ b= +122):|
el o xrad e )l (x-25-40)]
el o (xrad- )l (x- a4l k(o
(58)

where
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kn(x):aelqs(x—ﬂlze/i)ti?i(xwlh/z)
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Replacing x with x—A4h/2 in Eg. (53) and x with

x+Ah/2 inEq. (54), respectively, obtain

@”[ SRR, j [ Ao j

ol xoag ey

Sl xoag g )

_ ﬂlqlc( ﬂlh/z) a61Q1( B ﬂlh/z)
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_ Al (X+ A/2) — 3Gy (x+ A4h/2)
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Eg. (60) minus Eqg. (61) obtains

h h h h
(Pés)(X—ﬂaE*'/leJﬂ/’@(’”/ﬂg—ﬂzij

@ﬂ}—ag—@bj+@ﬂ}+ag+@gj
aeaﬂi 3, (3 h j
aezﬁ'l a61 2 2
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362/11 ae1 2 2
363/11 aalﬂa D —_
a62ﬂ’1 361 2 ( il 2 13 j
assﬁ'l aslﬁe ( h J
aszfll ae1 2

:%axx+awa+4%4x 4h/2)
a62/11 - as1/12

_ a61q1(x - ﬂ’lh/z) + ﬂ1q§c (X + ﬂ’lh/z)
a62/11 - as1/12 .

Eq. (62) minus Eqg. (52) obtains

(59)
el o (x-ad -]l (e a0 2 )
(63)
where
()= 85,05 (X + 4h/2) + 405 (x - 4h/2)
aezﬂi _a61ﬂ'2
_ ae1q1(X—/11h/2)+ iquc(x+ ﬁ,lh/z)
aez% - asliz (64)
Al (X=4h/2)+ g, (x+ 4h/2)
(%0 PPRY
L A (x4 A0/2) 40, (x = 4h/2)
Zo(h+2)

Replacing x with x-4h/2 in Eq. (53) and x with
x+A,h/2 inEq. (54), respectively, obtain

o (x)— ¢t (x— 4h)

(61)
L —agd h .h
aﬁZAl aGl 2 ¢5 [ }vz i jg j
dwhak h ] (65)
aﬁz/ll aGl/lZ [ }vz 23
_ ﬂiqlc( ﬂ?h/Z) aelql( _ﬂzh/z)
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J B =3 h_,h
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Eq. (65) minus Eqg. (66) obtains

[0 (x+ 2;h) = 0 (x = 2,0) ]

+a§0[¢§ (x—22%+ Ay 2]+(p(3)[x+izg+ Aagﬂ

_ ® h_,h (s)[ h_ ]
aa{ws (x+122 /132j+(p X=2, 5 As = ki (x)
(67)

where
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) 310y (X + A1/2) + AGc (X = 450/ 2)
aez’ll _361’12

Ah/2) = A5 (X + 4,h/2)
8k — 2l '

ki (X
(68)
_ 8t ( X-

Egs. (58), (63) and (67) are the unified equations to solve
the boundary value problem of piezoelectric plane beam acted
by arbitrary mechanical and electrical loads.

We can construct ¢,(x), @,(x) and ¢,(x) in terms of
k;(x)(i=12,3).0nce ¢,(x), @(x) and ¢,(x) are con-
structed, ¢,(x) can be constructed by replacing x with
x—Ah/2 in Eq. (53) and integrating Eq. (53) with respect
to x thrice

0(0)=0.x- )b -4 5 + 47 |
+a§0¢6[x—%h—ﬂsh)
w1
ezﬂi aelﬂzj {I D ql(

Ay +A31X+A30

ol
ol

¢,(x) can be constructed by integrating Eq. (45) with re-
spectto x thrice

(pz(x)=+/12(;}27)(p3[x+212+222j
i
+w%[”42%2j
W%( %2%9 (70)

a3
o

+Azz +A21X+ Ao

@ (x) can be constructed by integrating Eq. (50) with re-
spectto x thrice

a()=- 2By (x- 202 )

(1)

A(A+4) (_ h nj
G PR

CUEN A

<2
el

A +A11X+A10

+

where A; are unknown constants.

The expressions of o,,,0,,0,,u,w,D,,D, and @,
can be expressed by using ¢ (x)(i=12,..,6) at present.
Since Eq. (2) are satisfied, the reaming unknown constants
can be determined by using the boundary conditions of two
ends of the beam and obtain the expressions of stress, dis-
placement, electrical displacement and electrical potential
finally.

From the solution procedure mentioned above, how to con-
struct ¢,(x), ¢,(x) and @(x) is the key point to figure
out the problem. The conclusions given below can be con-
firmed by substituting the expressions of loads and expres-
sions of ¢,(x), @(x) and ¢(x) into Egs. (58), (63)
and (67).

When the plane beam acted by loads

x)=qjo+§qﬁ (i) (i=13) (72)

2,(x), @5(x) and g, (x) can be constructed as

m+6 . m+6 m+6

iXiv (/’s(x): ZAeiXi (73)

i=0 i=0 i=0

1]
™M
>
_><_
S
=

Il
g
&

(/’A(X)

where A, A, and A; (i
constants.
When the plane beam acted by loads

=0,1,..,m+6) are unknown

x)=qjo+iqji[{j (i=24) (74)
?,(X), @s(x) and ¢, (x) can be constructed as
p(X)=SAK, a(N=2AX, a(x)=3Ax 79

where A, A; and A; (i
constants.
When the plane beam acted by loads

=0,1,..,m+5) are unknown
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: X):qfo+iqji(%j (j=1,2) (76)
?,(X), @5(x) and ¢ (x) can be constructed as
¢4(X):§1A4ixi' (ps(x):[_ni‘Asixir (ps(x):iilp\aixi (77)

where A, A; and A; (i
constants.
When the plane beam acted by loads

=0,1,..,m+4) are unknown

q;(x)=qa;sin(5x) or q;(x)=q;cos(5x) (j=13) (78)

where ¢, is a known coefficient,
@s(x) can be constructed as

?,(x) , o(x) and

5
X)=Y AX +E,-cos(5,X)+F, -sin(dX)

i=0

= i,ﬁsix‘ +E, - c0s(3,X) + F -sin(8,x) (79)
= Zslpbixi + Eg - c0s(5,X) + Fs -sin(5,x)

i=0

(Pe(x)

where A, A; and A; (i=01..5), E,, F,, E, K,
E, and F, are unknown constants.
Similarly, if we need to deal with

q;(x)=q;sin(5x) or g;(x)=q;c0s(5x) (j=2.4) (80)

we can simply let the polynomial part of Eq. (79) with degree
of 4 against x and 3 for following type of loads.

gt (x)=qfsin(5x) or qf(x)=qfcos(sx) (j=12) (81)
In the case when the loads are complicated, such as they are

not continuous in one of the longitudinal side, we can translate
functions, which represent the loads, into Fourier series as

qj(x):ryjo+Z[nmcos(an)+z//jnsin(an)] (i=13)
n=1
(82)
where
1 rL
Tio :f_‘-o q; (x)dx
L 83
nin:%_‘-oqj(x)cos(an)dx, anznTﬂ (83)

2 L :
v :IJ'O q; (x)sin (H ,x)dx

?,(X), @s(x) and ¢, (x) can be constructed as

6

ZO:A4 +Z[E4ncos H.x) ]+ Z[F cos(H,x)]

=ZA3 +Z[E5ncos H.x) ]+ Z[F cos(H,x) ] (84)

=3

6

:ZO:AGX +Z[E6ncos H,x ]+Z[F cos(H,x) ]

where A, A; and A; (i=01..m+6), E,, F,,
E.,, F,, E, and F,, areunknown constants.

Analogically, we can deal with discontinuous distribution of
9;(x)(i=24) and qf(x)(j=12) by only change poly-
nomial part of Eq. (84) with degree of 5 and 4 against x,
respectively.

3. Applications

In this section, various boundary conditions, including two
longitudinal sides of the beam and two ends supported condi-
tions of the beam, are considered to validating the correctness
and generalization of this method. In Section 3.1, the solution
procedure based on the idea given in Section 2 is presented in
detail. Then the solutions for three additional examples are
given. As the loads become complicated, the final expressions
become very length, In Sections 3.5, 3.6 and 3.7 the numerical
results are given in the form of surface. The material constants
are all derived from Ref. [14]. For all the numerical examples,

L and h aretakenas 0.1 mand 0.02 m, respectively.

3.1 Hinged end-roller end beam subjected to uniform shear
force

This example is used to compare the solutions with the re-
sults given in Ref. [15]. The boundary conditions of the two
longitudinal sides are

Q1(X)=0' %(X):Ov q3(X)=0, q4(X)=q40

£ £ (85)
O (X)ZO' g, (X):
The boundary conditions of two ends of beam are
U‘x:o = O) W‘X:U = O) W‘X:L =0
=0 =0 z=0
h
jfzg(axx\x Jdz=0, ®l0=0
h h (86)
[3(0nl,0)2dz=0, [%(0,]. )2dz=0
2 2

Step 1. Constructing the form of ¢,(x), ¢;(x) and
@s(x) in terms of the type of load. In this case, Eq. (75) is
usedand ¢,(x), ¢,(x) and ¢,(x) are constructed as

5 5

:ZA4iXi, ZAm ) 506 Zp\aixi- (87)

i=0 i=0
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Step 2: Substituting Eq. (87) into the unified equations of
Egs. (58), (63) and (67) obtain three linear algebra equa-
tions with respect to x . For the same reason mentioned be-
low Eqg. (31), the coefficients of x with any degree must be
equated to zero to satisfy the unified equations. It means that
the unified equations will provide 6 linear algebra equations
with respect to unknown constants A, , A, , A,, As,
A, and A, , which will show us the relationship between
(As, A; and Ag)and (A,, A,, Ay)inthiscase.

Step 3: Substituting Eq. (87) into Egs. (69)-(71) to obtain
the explicit expressions of ¢,(x), ¢,(x) and g¢,(x). It is
noted that at present the expressions of ¢, (x)(i=12,..,6) are
all explicit polynomial expressions.

Step 4: Substituting ¢, (x)(i=12,..,6) into Egs. (22)-(29)
and combining Egs. (32), (35)-(36) obtain the explicit ex-
pressions of o, ,0,,0,,u,w,D,,D, and ®. with some
unknown constants. We can verify that boundary conditions
of the two longitudinal sides of the beam have been satisfied.

Step 5: The remaining unknown constants can be deter-
mined by using the two ends supported conditions of the beam
and obtain the final solutions.

By using the solution procedure given above, the expres-
sions for stress, displacement, electrical displacement and
electrical potential are

T L L . e
h 2h
D -0 D --— Uy (0361 + 015635 ) 2 (89)
z ’ X 533h
(DE - _ c140 (2d31511|-z - 2d31511XZ B d15533hx) (90)
26,055
:_q40(513533—d31d33)(L—X)Z (91)
5h
__ q40(511533 - d321)(2|- - X)X + 040544 (h - Z)Z
26N 2 2h 92)
Gao |:513511533Z + 00ish + 0y,dy (di — dyy ) Z] z
26,,035h .

We can confirm that Eqgs. (88)-(92) satisfy Egs. (85) and
(86). Letting the coefficients of piezoelectricity and dielectric
impermeability equate to zero, the solution degenerate to the
Hinged end-Roller end orthotropic plane beam subjected to
uniform shear force as can be seen in Ref. [15], which show
the correctness of this method.

3.2 Hinged end-roller end beam subjected to uniform elec-
tric displacement

The boundary conditions of the two longitudinal sides are

(X)ZO‘ q3(x)=0, QA(X):O

g 93
(X)=0. G(x)=ab. 9

The ends supported conditions are the same to Eq. (86). By
using the solution method given above, the solutions are

c,=0, 0,=0, 0,=0 (94)
p, = %(1=22) "y _ Ga(L=x)x (95)
2h Lh
o :_q§0[533(3L—2x)x2+3511(h—z)Lz] (96)
6511533Lh
__ OplsX’ i Ozo (G0 + Igllis) X°
E 36,,Lh 26,,6,5h E o7
_ U2 (3511d31 + 3533d15 B 2533d33) Lx i QZodss (h - Z) A )
66,,6,,h 26,5h

We can confirm that Eqgs. (94)-(97) satisfy Egs. (93) and
(86). The expression for u are very length and will not list
here for concise. It is noted that when piezoelectric beam
acted by uniform electrical displacement the components of
w arise but the components of stress equate to zero, which
can be utilized for deformation control.

3.3 Fixed end-free end beam subjected to uniform shear
force

The boundary conditions of the two longitudinal sides are

&(x)=0, 6, (X)=0, gy(x)=0, g,(x)=0ay

. . (98)
a-(x)=0, q;(x)=0.
The boundary conditions of two ends of beam are
d
U0 =0, Wi =0, —| =0, ®c|iso=0
2=0 2=0 X [x=0 2=0
z=0
ul h
[3(wl,5)dz=0, [3(0,], ,)dz=0 (99)
2 2
h h
'[i(axx\x:L)zdz =0, '[i(DX\X:O)dz =0.
2 2
The solutions are
%:_Wl 5, =0
100
__q40(h+62)(h—22) (100)
e 4h?
b -0 D _ Qo (P05 + 6,05, ) (h + 62) (h — 22) (101)
. an%s,,
d,, (12xz% — 4hxz —h?x —12Lx* + 4Lhz
o, :_Q40 31( i + ) (102)
4h%s,,
U4 (511633 - dazl)(?’L - X) Xz
- 2
%l (103)

U0 (511533 - daldas)(h ~ 32)( L- X) z
8,h? '
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We can confirm that Egs. (100)-(103) satisfy Egs. (98)
and (99).

3.4 Fixed end-fixed end beam subjected to uniform shear
force

The boundary conditions of the two longitudinal sides are

ql(x):O' qz(X)ZOr qs(X)ZOI qA(X):q4O

. . (104)
g7 (x)=0, a;(x)=0.
The boundary conditions of two ends of beam are
Usg =0 Wheg =0, Uy =0, Whey =0
dw dw
= =0, —| =0, ®.|=0 105
dx x=0 dx x=L E‘Zzg ( )
z=0 z=0
h h
B(Dx\xzo)dz =0, ffh(Dx\X:L)dz =0.
2 2
The solutions are
L-2 h-2
" — _qAO( X)’ O_ZZ =0, ze — q40( Z) (106)
2h 2h
DZ — 0’ Dx - _ qAO (511d31 + 633d15)z (107)
Syh
(DE - _ c140 (511d31LZ - 533d15hx - 2d31511XZ) (108)
2N6,,04,
:_Q40(511533_d31d33)(L_2X)Z (109)
25,,h '

We can confirm that Egs. (106)-(109) satisfy Egs. (104)
and (105).

3.5 Fixed end-roller end beam subjected to linear shear
force

The boundary conditions of the two longitudinal sides are

6(x)=0, 6,(x)=0, g(x)=0, ¢ (x)=0

X . (110
q4(X) =0y t 0y I , 0, (X) =0.
The boundary conditions of two ends of beam are
u‘x=0 = 0; W‘x:O = 01 u‘x:L =0
z= z= =0
dw
=0, Ol =0
dx x=0 E‘z:g
=0
(111
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Fig. 2. Distribution of o,, and o, forwhole piezoelectric beam.

The numerical results for distribution of o,, and o, in
whole piezoelectric beam are given in Fig. 2(a) and (b), re-
spectively, with loads parameters taken as q,, = q,, =—10Pa .

It is noted from Fig. 2(a) the max value of o,, take place
near the region of coordinate (0, 0.01). But for o, , the max
value arises near the region of z=0.01.

3.6 Fixed end-hinged end beam subjected to quadratic elec-
tric displacement

The boundary conditions of the two longitudinal sides are
9,(x)=0, 0,(x)=0, @gs(x)=0, q,(x)=0

2
X X
6 (x) =0, Q§(X)=q§o+q§1(—j+qi[—j-

L L

(112)

The boundary conditions of two ends of beam are

(113)

The numerical results for distribution of w and u in
whole piezoelectric beam are given in Fig. 3(a) and (b), re-
spectively, with loads parameters taken as g5, =q;, =05, =
10 C/m?.

We can find from Fig. 3(a) that the max value of w do not
arises at the center of the beam and also not the bottom and
upper surface of the beam. As to the distribution of u , the
change interval of its value are the same to w, but the max
value of u take place at the borderline of the beam.



1834 L. Zang et al. / Journal of Mechanical Science and Technology 25 (7) (2011) 1823~1835

(b)

2
D, (Cim?)
Bn
2
i
-
|
!

Fig. 4. Distribution of D, and D, for whole piezoelectric beam.

3.7 Fixed end—fixed end beam subjected to uniform pressure
force

The boundary conditions of the two longitudinal sides are

ql(X)ZO, qZ(X)=0, qg(X)=Q3m q4(X):0

. . (114)
9:(x)=0, qg;(x)=0.

The ends supported conditions are the same to Eq. (105).

The numerical results for distribution of D, and D, in

whole piezoelectric beam are given in Fig. 4(a) and (b), re-

spectively, with loads parameters taken as q,, =—10Pa.
Comparing Fig. 4(a) with (b), the distribution rule of D,
and D, is totally different. The distribution of D, can be
regarded as antisymmetry with respect to the center position
(0.05,0) of beam. The distribution of D, can be treated as
antisymmetry against the axis line z=0 of the beam.

4. Conclusions

The formulae presented in this paper can consider piezo-
electric plane beam subjected to arbitrary mechanical and
electrical loads with various ends supported conditions. Com-
paring this general method with traditional trial-and-error
method, the most advantage is it can obtain the exact solutions
directly and does not need to guess and modify the form of
stress function or electrical displacement function. Examples
show the correctness and generalization of this method.
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Appendix
a, = d321 — 511533
1
533 (d15 - d33)+ d31§11
31 —_ (2513 + 344)533 + d31 (d15 - das)
2 533 (d15 - das) + d31’5‘11 (Al)
a, =— S350
3
633 (d15 - dss ) + d31§11
633
a=—3
' 533 (d15 - das) + d31§11
a = 511511 + d31 (d15 - das)
. 533 (d15 - dss ) + d31511
_ (2513 + 544)511 - (d15 - d33 )2
22 =
533 (d15 - ':133)Jr d31511 (AZ)
a,, = 533511
533 (d15 - das) + d31§11
Ay =- %
533 (d15 - dsa) + d31§11
a
ay = (511 - d31a21)/113 + (313 - d31a22)ﬁ'1 - d31 Zzs
a
Az Z(Su _d:nau)j'z3 +(513 _d31azz)/12 _dalf (A3)
a
Ay = (511 - dalazl)j: + (513 —dya, )ﬁ"s - dSIf

ay; =(Sy3 — gy ) A7 + 555 — 033, —daa%
= (S5 — 0385 ) A7 + 535 —Uya, — gy % (A4)
;= (S5 — 038, ) A2 + S35 — Ay, — d33%
8=~ (0 +0,8) 4 ~ 0,8, = 6,2
A, =—(dis + 08y ) 4y = 5,8, —511% (A5)
= (b + 8,2 Gt =02
8y = (0 — 80 ) A + (g — Sy ) o — O %
B = (= 00 2+ (=0 =0y 2 (A6)
g =(Uyy — 5358, ) A5 +( 3y — 5385 ) & — S %
a, =a, A’ +a, + %
Ay, = Ay A7 + 8, + % (A7)
Ay = 8, A7 +8,, + %
o AUR) L A(hed)

A (A +2,) A (A4+4)
SR e I ey =
aéf:zji::ﬁ' a%:ﬂffl’ aée_ﬂffl
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