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Abstract 
 

This paper presents a 2-dof gravity compensator used for roll-pitch rotations, which are often applied to the shoulder joint of a service 

or humanoid robot. The 2-dof gravity compensator is comprised of two 1-dof gravity compensators and a bevel differential. The roll-

pitch rotations are decoupled into two rotations on the moving link by the bevel differential; the two 1-dof gravity compensators are ap-

plied to the two rotations. The spring coefficients are determined through energy and torque analyses in order to achieve complete static 

balancing. The experiment results indicate that the proposed gravity compensator effectively counterbalances the gravitational torques 

and can also be operated in the hemispherical work space.  
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1. Introduction 

Service robot manipulators are often required to operate in 

relatively large workspaces and are may be operated at low 

velocities for safety reasons. In such cases the gravitational or 

static torques become more of a consideration than the dy-

namic ones. To overcome the inefficiencies inherent to static 

torques, gravity compensators have been developed to coun-

terbalance the gravitational torques generated by the manipu-

lator mass [1]. Complete gravity compensation is defined as 

when the link masses no longer generate any torque at the 

joints in all manipulator configurations. 

Gravity compensators using a variety of springs have been 

proposed over the last three decades [2]. A 1-dof static balan-

cer with a single spring has been proposed in Ref. [3]. A 1-dof 

gravity compensator comprised of a pulley, wire and spring 

was presented by Ulrich and Kumar in 1991 [4]. An internal 

cam device used to counterbalance the gravitational torque has 

been developed and applied to a 3-dof 5-bar mechanism [5]. 

In 2003 Morita et al. presented a 3-dof gravity compensator 

used for yaw-roll-pitch rotations employing a single spring [6]. 

A design method using an n-spring balancer for a one-link 

system with a 2-dof rotation was developed based on potential 

energy by Walsh et al. in 1991 [7]. 

For a multi-link manipulator, the COM (center of mass) of 

the distal link with respect to the inertial frame varies with the 

rotation of the proximal link. To overcome this limitation 

caused by these complex rotations, a parallel constraint is 

often applied to the distal link to deliver the rotation of the 

distal link to the base link [3, 6, 8, 9]. Parallelograms [3] and 

pseudo parallelograms [6, 8] have been suggested for this 

purpose. The rotation of the distal link can be delivered to the 

base link with a parallelogram where a 2-dof gravity compen-

sator is attached [9]. Agrawal and Fattah proposed a hybrid 

strategy for an n-link manipulator [10]. In their research a 

parallelogram was adopted to represent the COM; springs 

were applied to the parallelogram. Gravity-compensated par-

allel mechanisms have been designed that utilize the concepts 

of balance springs and counterweights [11, 12]. 

This paper presents a 2-dofs gravity compensator used for 

roll-pitch rotations. Roll-pitch rotations are often found in the 

shoulder joints of human-like service robots. The proximal 

link of a service robot often possesses an almost hemispherical 

workspace. Since a point regarding the proximal link only 

moves along the hemispherical surface in this situation, the 

hemispherical workspace does not indicate a hemispherical 

working volume. Therefore, a gravity compensator for a ser-

vice robot needs to provide compensation for the particular 

hemispherical surface workspace under consideration. The 

proposed gravity compensator is comprised of two 1-dof grav-

ity compensators and a bevel differential. One bevel gear is 

fixed at the base; the other bevel gears revolve around the 

fixed one and rotate on its axis. The roll-pitch rotations are 

decoupled into two bevel gear rotations on the moving link 

and the two 1-dof gravity compensators are attached to their 
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respective rotating bevel gears to achieve the hemispherical 

work space. To determine the spring coefficients the total 

potential energy of the springs and the manipulator mass is 

investigated as described in Refs. [6-8, 10]. The energy analy-

ses reveal that the proposed compensator can deliver complete 

static balancing. The gravity compensation experiment results 

demonstrate that the proposed compensator can effectively 

counterbalance the gravitational torques and can operate in a 

hemispherical workspace. Note that the bevel gravity compen-

sator was briefly introduced with preliminary experiments [13, 

14]. Also note that the proposed 2-dof gravity compensator 

only works when the mass center is fixed. In a two-link ma-

nipulator, however, the mass center varies due to the rotation 

of the distal link. To overcome this limitation a counter mass 

is applied to the distal link [13] and spring balancers are used 

at the elbow joint [14]. 

The rest of this paper is organized as follows: Section 2 pre-

sents the 1-link manipulator with its roll-pitch rotations, Sec-

tion 3 introduces the 1-dof gravity compensator and the bevel 

gravity compensator, Section 4 discusses the gravity compen-

sation experiment results, and finally Section 5 provides our 

conclusions. 

 

2. The 1-link manipulator with roll-pitch rotations 

A schematic of the 1-link manipulator is shown in Fig. 1. θ1 

and θ2 represent the rotation angles in the z0 and in the y1 di-

rections, respectively. In this situation the rotation matrix for 

Fig. 2 is computed using: 

0
2 1 2( ) ( ) .z yθ θ=R R R                               (1) 

 

The mass of the arm, m, is located at distance l from the 

origin. Let 
2
p and 

0
p be the position vectors of the COM with 

respect to the {2} and {0} frames, respectively. 
0
p is deter-

mined by 
0
p = 

0
R2

2
p = l[c1c2, s1c2, -s2]

T
, where 

2
p = [l, 0, 0]

T
. 

Note that ci and si represent cosθi and sinθi.  

The gravitational torques can be computed by the principle 

of the virtual work. Suppose that gravity is applied in the posi-

tive x direction. The gravitational torque τm is determined by: 

 
0

1 2 1 2[ ,0,0] [ , ]T T T
m P mg mgl s c c s= = −τ J        (2) 

 

where 
0
Jp = l[-s1c2, -c1s2; c1c2, -s1s2; 0, -c2] ∈ R

3×2
 and τm = 

[τm1, τm2]
T
) (= τm1az0 + τm2ay1, where azi represents the unit vec-

tor in the zi direction). g denotes the gravitational acceleration. 

The potential energy of the manipulator mass by the gravity is 

computed by: 

 
0

1 2 1 2( , ) .m xV mg mglc cθ θ = − ⋅ = −p a             (3) 

 

3. The bevel gravity compensator 

The bevel gravity compensator is addressed in this section. 

The 1-dof gravity compensator used in the bevel gravity com-

pensator is briefly described and the bevel differential motions 

are discussed. It is demonstrated from the motions of the bevel 

differential that the roll-pitch rotations are decoupled into two 

rotations with respect to the moving link. The spring coeffi-

cients are determined by energy and torques analyses in order 

to attain complete gravity compensation. 

 

3.1 The 1-dof gravity compensator 

The 1-dof gravity compensator used in the bevel gravity 

compensator is summarized in Refs. [3, 6, 7] and illustrated in 

Fig. 2. One spring end is attached to point A fixed at ground 

and the other is attached to point B located at the arm. Points A 

and B are located at distances h and b from the origin O, re-

spectively. A zero-length spring is used, which has zero length 

at zero deflection (e.g., the initial state). The mass of m is lo-

cated at distance l from the origin. For the practical implemen-

tation of the zero-length spring, the section between points A 

and B can be interconnected with a wire; the spring is attached 

to the base or the arm. The spring coefficient that gives com-

plete gravity compensation is computed based on the torque [3, 

4] and the energy [6, 7]. 

Suppose that the torque caused by the gravity is completely 

canceled by the torque generated by a spring as shown in Fig. 

2. In this situation the total torque at the origin is computed 

by: 

 

0 B s m m= × + × =τ r f r g 0                     (4) 

 

 
 

Fig. 1. The 1-link manipulator with roll-pitch rotations. 

 

 
 

Fig. 2. The 1-dof gravity compensator. 
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where ri denotes the position vector of point i and fs represents 

the force vector generated by the spring. rB = b[cosq, sinq, 0]
T
, 

rm = l[cosq, sinq, 0]
T
 and 0 = [0, 0, 0]

T
. Assume that the grav-

ity is applied in the positive x direction (i.e., g = [g, 0, 0]). 

Since a zero length spring is used, fs is derived by:  

 

( )s AB A Bk k= = −f r r r                       (5) 

 

where k represents the spring coefficient and rA = [-h, 0, 0]
T
. 

Therefore, Eq. (4) becomes: 

 

0 ( )sin zbhk mgl q= − =τ a 0                   (6) 

 

where az denotes the unit vector in the z direction. To satisfy 

Eq. (6) for all q, (bhk – mgl) needs to be zero. Therefore, the 

spring coefficient is determined using: 

 

/ .k mgl bh=                               (7) 

 

In this manner, complete gravity compensation is achieved 

using k = mgl/bh for the 1-dof gravity compensator. 

Consider the total potential energy of the spring and the 

manipulator mass. Let Vk and Vm be the potential energy of the 

spring and the manipulator mass, respectively. The total po-

tential energy needs to be invariant to achieve complete grav-

ity compensation [7]: 

 

.m kV V V const= + =                        (8) 

 

where Vm = -rm⋅mg and Vk = k|rAB|
2
/2. From Fig. 2, |rAB|

2
 = b

2
 + 

h
2
 + 2bhcosq and -rm⋅mg = -mglcosq. Therefore, Eq. (8) is 

rewritten as: 

 
2 2( ) / 2 ( )cos .V k b h bhk mgl q const= + + − =      (9) 

 

The partial differential of Eq. (9) is computed using: 

 

/ ( )sin 0 .V q mgl bhk q∂ ∂ = − =                (10) 

 

To satisfy Eq. (10) for all q, (mgl - bhk) needs to be set to 

zero and, therefore, the same result (i.e., Eq. (7)) is obtained. 

Note that the 1-dof gravity compensator can be operated over 

the full range of q (i.e., −π  ≤ q ≤ π ), since the 1-dof gravity 

compensator has symmetry along the x-axis.  

 

3.2 The bevel gravity compensator 

Schematics of the bevel gravity compensator are presented 

in Fig. 3. The pose of θ1 = 0 and θ2 = -π/2 is illustrated in Fig. 

3(a). The bevel differential is located inside link 1 which ro-

tates in the z0 direction (i.e., θ1). One bevel gear is fixed at the 

base in the z0 direction and the others revolve around the fixed 

bevel gear and rotate on its axis. The rotating bevel gears and 

link 2 are attached to the y1 axis and rotate freely in the y1 

direction. Therefore, link 1 and link 2 rotate along the fixed 

bevel gear and rotating bevel gears, respectively. 

Let θb1 and θb2 be the angles of the rotating bevel gears with 

respect to link 2 along the y2 axis. Consider the motion of the 

bevel gears. When link 1 is fixed and link 2 rotates in the posi-

tive y1 direction (i.e., downward) as shown in Fig. 3(b), θb1 

and θb2 rotate in the negative y2 direction with respect to link 2. 

When link 1 rotates in the positive z0 direction (i.e., θ1) and 

link 2 is fixed as shown in Fig. 3(c), θb1 and θb2 rotate in the 

negative y2 direction and in the positive y2 direction, respec-

tively. Assume that reduction ratios of 1:1 are applied to the 

bevel differential and θbi = 0 for all i, when θ1 = θ2 = 0. Let θ = 

[θ1, θ2]
T
 (= θ1az0 + θ2ay1) and θb = [θb1, θb2]

T
 (= θb1ay2 + θb2ay2). 

θb is computed using: 
 

2
b =θ Jθ                                (11) 

 

where 
2
J = [-1, -1; 1, -1] ∈ R

2×2
. Therefore, the roll-pitch rota-

tions are decoupled into θb1 and θb2 with respect to link 2, 

whereas θ1 and θ2 are determined with respect to link 1 and 

 

(a) Locations of the 1-dof gravity compensator 

 

 

(b) Rotation in the 
1
y  direction 

 

 

(c) Rotation in the 
0
z  direction 

 

Fig. 3. The bevel gravity compensator schematics. 
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link 2, respectively. Note that the fixed bevel gear can be lo-

cated at the opposite position (i.e., far from the base, as seen in 

Fig. 3(a)). In this situation θb1 and θb2 rotate in the positive y2 

direction and in the negative y2 direction for the rotation of θ1 

and so 
2
J = [1, -1; -1, -1]. 

Rotating disks 1 and 2 are attached outside of link 2 and 

fixed at the rotating bevel gears. Therefore, the angles of the 

rotating disks are identical to θb. Points Ai and Bi are located at 

rotating disk i and link 2, respectively. Point Ai is located at 

distance h from the origin and the angle of θbi + π. Point Bi is 

located at distance b from the origin. Note that points Ai and Bi 

in Fig. 3(a) represent the same points found in Fig. 2. Zero 

length springs k1 and k2 are attached between points A1 and B1, 

and A2 and B2, respectively. Thus, two 1-dof gravity compen-

sators are applied to their respective rotating disks. For the 1-

dof gravity compensator in Fig. 2 one end of the spring is 

affixed to the base, whereas the bevel gravity compensator 

shown in Fig. 3(a) is attached to the rotating disk, which ro-

tates correspondingly to the pose of the manipulator (i.e., the 

variances of θ1 and θ2 from Eq. (11)). 

Rotation in the y1 direction (i.e., θ2) is depicted in Fig. 3(b). 

In this situation no rotation occurs for the rotating disk and 

therefore points A1 and A2 are fixed. As link 2 rotates, points 

B1 and B2 move to points B1' and B2', thereby resulting in an 

extension of the springs. θb1 and θb2 decrease in the y2 direc-

tion with respect to link 2, as denoted in Eq. (11).  

Consider rotation in the z0 direction (i.e., θ1) as shown in Fig. 

3(c). In this situation points A1 and A2 rotate in the negative y2 

direction and in the positive y2 direction, respectively, whereas 

B1 and B2 maintain their positions at the parallel line of z0. In 

Eq. (11), θb1 decreases and θb2 increases as link 2 rotates in the 

positive z0 direction. Therefore, the deflection of k1 increases 

and that of k2 decreases, since point Ai is attached to θbi + π.  

The potential energy of the springs can be investigated. The 

position of Ai with respect to link 2 is determined by: 
 
2 [cos( ),sin( ),0] [cos ,sin ,0]T T

Ai bi bi bi bih hθ π θ π θ θ= + + = −p  

    (12) 
 

for all i. The position of Bi with respect to link 2 is 
2
pBi = [b, 0, 

0]
T
. Assuming that zero length springs are utilized, the deflec-

tion of spring ki is computed using:  
 
2 2 2 2 2 2| | 2 cos .i Ai Bi bis b h bh θ= − = + +p p        (13) 

 

From Eq. (11), Eq. (13) can be rewritten as: 
 
2 2 2 22 cos( )i is b h bh= + + J θ                    (14) 

 

where 
2
Ji denotes the i-th row vector of 

2
J in Eq. (11). Since 

two springs are utilized in the bevel gravity compensator, the 

total potential energy of the springs is determined by: 

 
2 2

1 1 2 2( ) / 2 .kV k s k s= +                       (15) 

Substituting Eq. (14) into Eq. (15) yields: 

 

1 2 1 2(cos( ) cos( )) .kV C bhk θ θ θ θ= + + + −        (16) 

 

By considering the symmetry of the springs along the x2 

axis, we can set k1 = k2 = k. With the value 
2
J from Eq. (11), 

Eq. (16) becomes: 
 

1 2 1 2(cos( ) cos( ))kV C bhk θ θ θ θ= + + + −        (17) 

 

where C = 2k(b
2
 + h

2
). Since cos(θ1 + θ2) + cos(θ1 - θ2) = 2c1c2, 

the potential energy of the springs is finally computed by: 

 

1 22 .kV C bhkc c= +                          (18) 

 

The same results found for Eq. (18) can be obtained for 
2
J = 

[1, -1; -1, -1] (i.e., the fixed bevel gear is located at the oppo-

site position). 

The total potential energy of the springs and the manipula-

tor mass remain constant to achieve complete gravity compen-

sation, similar to that found in Eq. (8). Using Eqs. (3) and (18), 

the total potential energy of the springs and the manipulator 

mass is derived by V = Vm + Vk = const. The partial differential 

of V is determined by: 
 

/ / / 0.i m i k iV V Vθ θ θ∂ ∂ = ∂ ∂ + ∂ ∂ =           (19) 

 

From Eq. (3) ∂Vm/∂θi is computed using: 

 

1 1 2 2 1 2/ , / .m mV mgls c V mglc sθ θ∂ ∂ = ∂ ∂ =       (20) 

 

From Eq. (18) ∂Vk/∂θi is determined by: 

 

1 1 2 2 1 2/ 2 , / 2 .k kV bhks c V bhkc sθ θ∂ ∂ = − ∂ ∂ = −    (21) 

 

Substituting Eqs. (20) and (21) into Eq. (19) yields: 
 

1 2 1 2( 2 )[ , ] .Tmgl bhk s c c s− = 0                 (22) 

 

Eq. (22) is satisfied for all θi, when mgl – 2bhk = 0. The 

spring coefficient k is determined by: 

 

/ 2 .k mgl bh=                             (23) 

 

Recalling that k = mgl/bh from Eq. (7) for the 1-dof gravity 

compensator, half of the stiffness is necessary for the bevel 

gravity compensator. This means a weaker spring can be ap-

plied to the bevel gravity compensator. Considering the spring 

number (i.e., two springs), however, the total stiffness of the 

springs has the same value as that found for the 1-dof gravity 

compensator. 

The coefficient of the spring can be also determined through 

torque analyses. The torques at the θ1 and θ2 joints generated 

by the springs (τs = [τs1, τs2]
T
 (= τs1az0 + τs2ay1)) can be com-

puted by the principal of the virtual work as in τs = 
2
J
T
τb, 
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where τb = [τb1, τb2]
T
 (= τb1ay2 + τb2ay2) and τbi denotes the ex-

erting torque at the rotating disk i by the spring ki. Utilizing Eq. 

(4), τbi is computed by: 
 

2 2 2 2 2

2 2

( )

sin .

bi Ai si Ai i Bi Ai

i Ai Bi i bi

k

k k bh

τ

θ

= × = × −

= × =

p f p p p

p p
  (24) 

 

Taking into consideration the symmetry of the springs along 

the x2 axis, we can state k1 = k2 = k. Therefore, straightforward 

computations of τs = 
2
J
T
τb yield:  

 

1 2 1 2[sin sin ,sin sin ] .T T
s b b b b bkbh θ θ θ θ= = − − +τ J τ    (25) 

 

Since θb1 = -θ1 - θ2 and θb2 = θ1 - θ2 from 
2
J in Eq. (11), Eq. 

(25) can be rewritten as: 
 

1 2 1 2 1 2 1 2[sin( ) sin( ),sin( ) sin( )] .T
s kbh θ θ θ θ θ θ θ θ= + + − + − −τ  

 (26) 
 

Substituting sin(θ1 + θ2) + sin(θ1 - θ2) = 2s1c2 and sin(θ1 + 

θ2) - sin(θ1 - θ2) = 2c1s2 into (26) yields: 
 

1 2 1 22 [ , ] .T
s kbh s c c s=τ                       (27) 

 

The total moment at joint i needs to be zero for all θi to 

achieve complete gravity compensation. Using Eqs. (2) and 

(27), the total moment is determined by: 
 

1 2 1 2(2 )[ , ] .T
m s kbh mgl s c c s+ = − =τ τ 0          (28) 

 

Eq. (28) has the value of zero for all θi, when 2kbh - mgl = 0. 

Therefore, the same result is obtained as found in Eq. (23). 

Since the 1-dof gravity compensator in Fig. 2 can be oper-

ated over the full range of q, as mentioned in Section 2, θb1 

and θb2 rotate in the range of –π ≤ θbi ≤ π for all i. Therefore, 

θ1 and θ2 can also rotate in the range of –π ≤ θi ≤π for all i, 

referring to Eq. (11). For practical implementation, however, 

the ranges of θ1 and θ2 are delimited to –π  ≤ θ1 ≤ π and –π ≤ 

θ2 ≤ 0 to avoid collisions with the base, thereby resulting in a 

hemispherical work space. 

 

4. The experiments 

4.1 The experiment setup 

Pictures of the bevel gravity compensators are presented in 

Fig. 4. l and m have the values of 0.164 m and 6.7 kg, respec-

tively. hi and bi are set to 0.0685 m and 0.049 m, respectively. 

The gravity is applied in the positive x0 direction (i.e., 
0
g = [g, 

0, 0]
T
). The spring coefficient is computed by k = mgl/2bh = 

1.59 kN/m. Two 50 W motors were implemented at the rotat-

ing bevel gears with the reduction ratio of 38:1. For this ex-

periment setup the fixed bevel gear were located at the oppo-

site side. 

For these gravity compensation experiments, the host pro-

gram in the PC sent the desired angles to the motor controllers 

and received the measured angles and motor currents from the 

motor controllers. The torques generated by the motors were 

obtained by multiplying the measured currents by the torque 

constants of the motors. 

 

4.2 The experiment results 

Various poses from Table 1 were made to evaluate the grav-

ity compensation performance. θ 1 and θ 2 were set to 0 and -π , 

respectively, for the initial pose (i.e., t = 0). That is, link 2 was 

fully raised in the negative x0 direction. Each pose was main-

tained for 10s to achieve the static states (i.e., omega = 0 for 

all joints). Consider pose 1 for example. The rotation of θ 2 

begins at t = 0s and holds until t = 10s after reaching θ 2 = -π 

/4. The gravity compensation experiments were conducted in 

half of the hemispherical work space, per Table 1. However, 

the performance of the bevel gravity compensator can be de-

termined by the experiment results for half of the hemispheri-

cal work space because of its symmetrical nature. 

The gravity compensation experiment results are presented 

in Figs. 5 and 6. The reference angle and omega in Figs. 5 and 

6 denote θi from Table 1 and the measured angular velocity of 

θi. The gray areas in Figs. 5 and 6 represent the static situa-

tions. The measured motor torques are compared to the static 

 
 

Fig. 4. The bevel gravity compensator pictures. 
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torques with no gravity compensation, which are computed 

using t1 = mgls1c2 and t2 = mglc1s2 for the desired poses in 

Table 1. The static torques represent the desired motor torques 

needed to maintain the pose of the manipulator. The values of 

the measured torques are almost zero during omega ≅ 0 (i.e., 

the gray areas) for all instances, whereas those of the static 

torques are relatively large. These results indicate that gravity 

compensation was effectively achieved in half of the hemi-

spherical work space. 

It is noted that the measured torques should have zero val-

ues in the ideal situation. In practical situations, however, the 

measured torques have non-zero values because of joint fric-

tion. Friction provides the gravity compensator with certain 

torque margins. That is, a manipulator can hold its pose even 

when gravity compensators generate inaccurate torques. Since 

low 38:1 reduction ratios were adopted in the experiment to 

minimize the effect of the gear friction torque, the manipulator 

becomes fully backdrivable as in a haptic device. Therefore, it 

can be assumed that narrow torque margins were provided in 

the experiments. However, we could not accurately measure 

or estimate the friction torque or the torque margin, since no 

torque sensors were implemented into the manipulator. 

 

5. Conclusions 

This paper presents a 2-dofs gravity compensator for roll-

pitch rotations in which a bevel differential and two 1-dof 

gravity compensators are implemented. The spring coefficient 

was determined that achieved complete gravity compensation. 

The experiment results show that the bevel gravity compensa-

tor can effectively counterbalance the gravitational torques 

and can be operated in a hemispherical work space. From the 

various experiments, the following conclusions are drawn: 

(1) The roll-pitch rotations are effectively decoupled by the 

bevel differential to provide a hemispherical work space.  

(2) Complete gravity compensation is achieved with two 1-

dof gravity compensators implemented at the decoupled rota-

tions. 

(3) Half of the stiffness needed for a 1-dof gravity compen-

sator is necessary for the bevel gravity compensator. 

 

In future studies, it will be necessary to investigate the adap-

tation to a payload, since the effects of the payload are critical 

to gravitational torques. 
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Table 1. The desired poses. 
 

 θ1 (rad) θ2 (rad) 

Pose 1 0 -π/4 

Pose 2 0 -3π/4 

Pose 3 π/4 -3π/4 

Pose 4 3π/4 -3π/4 

 

 
 

Fig. 5. The θ1 experimental results. 
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