Published Papers
     Search Papers (Springer,
   After 2008)
     Search Papers (Dbpia,
   Until 2007)
     Search Papers (JMST
   own data base)
       - Classification By Year   
       - Classification By Topic
     Special Issues
   
           
   
 
 
Subject Keyword Abstract Author
 
 
An improved radial basis function network for structural reliability analysis

H. Z. Dai, W. Zhao, W. Wang* and Z. G. Cao
The Journal of Mechanical Science and Technology, vol. 25, no. 9, pp.2151-2159, 2011

Abstract : Approximation methods such as response surface method and artificial neural network (ANN) method are widely used to alleviate the computation costs in structural reliability analysis. However most of the ANN methods proposed in the literature suffer various drawbacks such as poor choice of parameter setting, poor generalization and local minimum. In this study, a support vector machine-based radial basis function (RBF) network method is proposed, in which the improved RBF model is used to approximate the limit state function and then is connected to a reliability method to estimate failure probability. Since the learning algorithm of RBF network is replaced by the support vector algorithm, the advantage of the latter, such as good generalization ability and global optimization are propagated to the former, thus the inherent drawback of RBF network can be defeated. Numerical examples are given to demonstrate the applicability of the improved RBF network method in structural reliability analysis, as well as to illustrate the validity and effectiveness of the proposed method.

Keyword : Radial basis function network; Response surface method; Structural reliability; Support vector machine

 
 
 
JMST Editorial Office: #702 KSTC New Bldg, 22 7-gil, Teheran-ro, Gangnam-gu, Seoul 06130, Korea
TEL: +82-2-501-3605, E-mail: editorial@j-mst.org
JMST Production Office: #702 KSTC New Bldg, 22 7-gil, Teheran-ro, Gangnam-gu, Seoul 06130, Korea
TEL: +82-2-501-6056, FAX: +82-2-501-3649, E-mail: editorial@j-mst.org