Published Papers
     Search Papers (Springer,
   After 2008)
     Search Papers (Dbpia,
   Until 2007)
     Search Papers (JMST
   own data base)
       - Classification By Year   
       - Classification By Topic
     Special Issues
   
           
   
 
 
Subject Keyword Abstract Author
 
 
Eigenvalue problems of rotor system with uncertain parameters

Bao-Guo Liu*
The Journal of Mechanical Science and Technology, vol. 26, no. 1, pp.1-10, 2012

Abstract : A general method for investigating the eigenvalue problems of a rotor system with uncertain parameters is presented in this paper. The recurrence perturbation formulas based on the Riccati transfer matrix method are derived and used for calculating the first- and secondorder perturbations of eigenvalues and their respective eigenvectors for the rotor system with uncertain parameters. In addition, these formulas can be used for investigating the independent, and repeated, as well as the complex eigenvalue problems. The general method is called the Riccati perturbation transfer matrix method (Riccati-PTMM). The formulas for calculating the mean value, variance, and covariance of the eigenvalues and eigenvectors of the rotor system with random parameters are also given. Riccati-PTMM is used for calculating the random eigenvalues of a simply supported Timoshenko beam and a test rotor supported by two oil bearings. The results show that the method is accurate and efficient.

Keyword : Rotordynamics; Uncertain parameter; Eigenvalue problem; Perturbation; Riccati transfer matrix method

 
 
 
JMST Editorial Office: #702 KSTC New Bldg, 22 7-gil, Teheran-ro, Gangnam-gu, Seoul 06130, Korea
TEL: +82-2-501-3605, E-mail: editorial@j-mst.org
JMST Production Office: #702 KSTC New Bldg, 22 7-gil, Teheran-ro, Gangnam-gu, Seoul 06130, Korea
TEL: +82-2-501-6056, FAX: +82-2-501-3649, E-mail: editorial@j-mst.org