|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Eigenvalue problems of rotor system with uncertain parameters
Bao-Guo Liu*
The Journal of Mechanical Science and Technology, vol. 26, no. 1, pp.1-10, 2012
Abstract : A general method for investigating the eigenvalue problems of a rotor system with uncertain parameters is presented in this paper. The
recurrence perturbation formulas based on the Riccati transfer matrix method are derived and used for calculating the first- and secondorder
perturbations of eigenvalues and their respective eigenvectors for the rotor system with uncertain parameters. In addition, these
formulas can be used for investigating the independent, and repeated, as well as the complex eigenvalue problems. The general method is
called the Riccati perturbation transfer matrix method (Riccati-PTMM). The formulas for calculating the mean value, variance, and covariance
of the eigenvalues and eigenvectors of the rotor system with random parameters are also given. Riccati-PTMM is used for calculating
the random eigenvalues of a simply supported Timoshenko beam and a test rotor supported by two oil bearings. The results
show that the method is accurate and efficient.
Keyword : Rotordynamics; Uncertain parameter; Eigenvalue problem; Perturbation; Riccati transfer matrix method |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
JMST Editorial Office: #702 KSTC New Bldg, 22 7-gil, Teheran-ro, Gangnam-gu, Seoul 06130, Korea
TEL: +82-2-501-3605, E-mail: editorial@j-mst.org |
JMST Production Office: #702 KSTC New Bldg, 22 7-gil, Teheran-ro, Gangnam-gu, Seoul 06130, Korea
TEL: +82-2-501-6056, FAX: +82-2-501-3649, E-mail: editorial@j-mst.org |
|
|
|
|