Published Papers
     Search Papers (Springer,
   After 2008)
     Search Papers (Dbpia,
   Until 2007)
     Search Papers (JMST
   own data base)
       - Classification By Year   
       - Classification By Topic
     Special Issues
   
           
   
 
 
Subject Keyword Abstract Author
 
 
Influence of nozzle exit tip thickness on the performance and flow field of jet pump

Xinping LONG
The Journal of Mechanical Science and Technology, vol. 22, no. 10, pp.1959-1965, 2008

Abstract : The influence of exit tip thickness of nozzle ¥ä e on the flow field and performance of a jet pump was studied numerically in this paper. It is found that ¥ä e has influence on the distribution of turbulence kinetic energy k. If ¥ä e is ignored, k takes the highest value but dissipates rapidly than that of nozzle with a certain tip thickness. ¥ä e also affect apparently the development of tip vortex, which will occur near the exit tip of nozzle. The bigger the ¥ä e is, the larger the vortex is. The tip vortex develops with the increase of flow rate ratio q. When q=1 and ¥ä e=0.6~0.8mm, a small vortex will be found downstream the tip vortex. And a concomitant vortex happens down the tip vortex in the case of q=1 and ¥ä e=0.8mm. As q increases to 2, the downstream small vortex disappears and the concomitant vortex becomes bigger. It is also found that the tip vortex might interact with the possible backflow that formed in the throat tube and parts of suction chamber. The center of backflow was affect evidently by ¥ä e. With the increase of ¥ä e, the center of backflow under the same q will go downstream. When ¥ä e=0.4mm, the center of backflow goes farthest. Then, as the further increase of ¥ä e, the center of backflow will go back some distance. Although, ¥ä e has relatively great influence on the flow field within the jet pump, it exerts only a little impact on the performance of jet pump. When ¥ä e=0.2~0.6mm, the jet pump possess better performance. In most case, it is reasonable to ignore the nozzle exit tip thickness in performance prediction for the purpose of simplicity.

Keyword : Jet pump; Nozzle exit tip thickness; Numerical simulation; Tip vortex

 
 
 
JMST Editorial Office: #702 KSTC New Bldg, 22 7-gil, Teheran-ro, Gangnam-gu, Seoul 06130, Korea
TEL: +82-2-501-3605, E-mail: editorial@j-mst.org
JMST Production Office: #702 KSTC New Bldg, 22 7-gil, Teheran-ro, Gangnam-gu, Seoul 06130, Korea
TEL: +82-2-501-6056, FAX: +82-2-501-3649, E-mail: editorial@j-mst.org