Published Papers
     Search Papers (Springer,
   After 2008)
     Search Papers (Dbpia,
   Until 2007)
     Search Papers (JMST
   own data base)
       - Classification By Year   
       - Classification By Topic
     Special Issues
   
           
   
 
 
Subject Keyword Abstract Author
 
 
Multi-objective optimization of electric-discharge machining process using controlled elitist NSGA-II

Pushpendra S. Bharti*, S. Maheshwari and C. Sharma
The Journal of Mechanical Science and Technology, vol. 26, no. 6, pp.1875-1883, 2012

Abstract : Parametric optimization of electric discharge machining (EDM) process is a multi-objective optimization task. In general, no single combination of input parameters can provide the best cutting speed and the best surface finish simultaneously. Genetic algorithm has been proven as one of the most popular multi-objective optimization techniques for the parametric optimization of EDM process. In this work, controlled elitist non-dominated sorting genetic algorithm has been used to optimize the process. Experiments have been carried out on die-sinking EDM by taking Inconel 718 as work piece and copper as tool electrode. Artificial neural network (ANN) with back propagation algorithm has been used to model EDM process. ANN has been trained with the experimental data set. Controlled elitist non-dominated sorting genetic algorithm has been employed in the trained network and a set of pareto-optimal solutions is obtained.

Keyword : Artificial neural networks; Electric discharge machining; Genetic algorithm; Material removal rate; Optimization; Pareto-optimal solutions;

 
 
 
JMST Editorial Office: #702 KSTC New Bldg, 22 7-gil, Teheran-ro, Gangnam-gu, Seoul 06130, Korea
TEL: +82-2-501-3605, E-mail: editorial@j-mst.org
JMST Production Office: #702 KSTC New Bldg, 22 7-gil, Teheran-ro, Gangnam-gu, Seoul 06130, Korea
TEL: +82-2-501-6056, FAX: +82-2-501-3649, E-mail: editorial@j-mst.org