Published Papers
     Search Papers (Springer,
   After 2008)
     Search Papers (Dbpia,
   Until 2007)
     Search Papers (JMST
   own data base)
       - Classification By Year   
       - Classification By Topic
     Special Issues
   
           
   
 
 
Subject Keyword Abstract Author
 
 
Finite volume method analysis of heat transfer problem using adapted strongly implicit procedure

Abel Rouboa
The Journal of Mechanical Science and Technology, vol. 23, no. 6, pp.1553-1562, 2009

Abstract : In most issues representing physical problems, the complex geometry cannot be represented by a Cartesian grid. The multi-block grid technique allows artificially reducing the complexity of the geometry by breaking down the real domain into a number of sub-domains with simpler geometry. The main aim of this article is to show the usefulness of simple solvers in complex geometry problems, when using curvilinear coordinates combined with multi-block grids. This requires adapted solvers to a nine nodes computational cell instead of the five nodes computational cell used with Cartesian coordinates for two-dimensional cases. These developments are presented for the simple iterative methods Jacobi and Gauss-Seidel and also for the incomplete factorization method strongly implicit procedure (SIP). These adapted solvers are tested in two cases: a simple geometry (heat transfer in a circular cross-section) and a complex geometry (solidification case). Results of the simple geometry case show that all the adapted solvers have good performance with a slight advantage for the SIP solver. For increasing the complexity of the geometry, the results showed that Jacobi and Gauss-Seidel solvers are not suitable. However, the SIP method has a reasonable performance. A conclusion could be drawn that the SIP method could be used in complex geometry problems using multi-block grid technique when high precision results are not required.

Keyword : Curvilinear coordinates; Heat transfer; Multi-block grid; Strongly implicit procedure

 
 
 
JMST Editorial Office: #702 KSTC New Bldg, 22 7-gil, Teheran-ro, Gangnam-gu, Seoul 06130, Korea
TEL: +82-2-501-3605, E-mail: editorial@j-mst.org
JMST Production Office: #702 KSTC New Bldg, 22 7-gil, Teheran-ro, Gangnam-gu, Seoul 06130, Korea
TEL: +82-2-501-6056, FAX: +82-2-501-3649, E-mail: editorial@j-mst.org