Published Papers
     Search Papers (Springer,
   After 2008)
     Search Papers (Dbpia,
   Until 2007)
     Search Papers (JMST
   own data base)
       - Classification By Year   
       - Classification By Topic
     Special Issues
   
           
   
 
 
Subject Keyword Abstract Author
 
 
Free vibration analysis of functionally graded coupled circular plate with piezoelectric layers

S. Jafari Mehrabadi
The Journal of Mechanical Science and Technology, vol. 23, no. 8, pp.2008-2021, 2009

Abstract : Based on classical plate theory (CLPT), free vibration analysis of a circular plate composed of functionally graded material (FGM) with its upper and lower surfaces bounded by two piezoelectric layers was performed. Assuming that the material properties vary in a power law manner within the thickness of the plate the governing differential equations are derived. The distribution of electric potential along the thickness direction in piezoelectric layers is considered to vary quadratically such that the Maxwell static electricity equation is satisfied. Then these equations are solved analytically for two different boundary conditions, namely clamped and simply supported edges. The validity of our analytical solution was checked by comparing the obtained resonant frequencies with those of an isotropic host plate. Furthermore, for both FGM plate and FGM plate with piezoelectric layers, natural frequencies were obtained by finite element method. Very good agreement was observed between the results of finite element method and the method presented in this paper. Then for the two aforementioned types of boundary conditions, the values of power index were changed and its effect on the resonant frequencies was studied. Also, the effect of piezoelectric thickness layers on the natural frequencies of FGM piezoelectric plate was investigated.

Keyword : Functionally Graded; Circular Plate; Piezoelectric; Vibration

 
 
 
JMST Editorial Office: #702 KSTC New Bldg, 22 7-gil, Teheran-ro, Gangnam-gu, Seoul 06130, Korea
TEL: +82-2-501-3605, E-mail: editorial@j-mst.org
JMST Production Office: #702 KSTC New Bldg, 22 7-gil, Teheran-ro, Gangnam-gu, Seoul 06130, Korea
TEL: +82-2-501-6056, FAX: +82-2-501-3649, E-mail: editorial@j-mst.org