|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Influence of corner radius on the near wake structure of a transversely
R. Ajith Kumar/Chang Hyun Sohn/B. H. Lakshmana Gowda
The Journal of Mechanical Science and Technology, vol. 23, no. 9, pp.2390-2416, 2009
Abstract : The near wake flow field features of transversely oscillating square section cylinders with different corner radii were
studied in an attempt to assess the influence of corner radius. The investigation was performed by using particle image
velocimetry (PIV) technique in a water channel with a turbulence intensity of 6.5%. Five models were studied with
r/B=0, 0.1, 0.2, 0.3 and 0.5 (r is the corner radius and B is the characteristic dimension of the body), and the body oscillation
was limited to lock-in condition (at fe/fo=1.0; fe is the excitation frequency and fo is the vortex shedding frequency
from a stationary cylinder at the same Re). The corner radius was found to significantly influence the flow
features around the bodies. Except for r/B=0.5, for all the other cases of r/B ratios, cycle-to cycle variation in the mode
of vortex shedding was observed in the case of oscillating cylinders inducing highly non-linear wake characteristics.
Apart from variation in the shedding mode, changes in shedding cycle timing were also observed for sharp and rounded
square cylinders. The hgher the r/B ratio, shedding in the near wake was found to be more uniform (lesser variation in
shedding cycle timings). Another admissible shedding mechanism is newly identified to operate in the near wake of
oscillating cylinders now being called as the ¡®passive shedding¡¯ mechanism. Results indicate that increasing the corner
radius suppresses the possible instabilities of the cylinder.
Keyword : Flow-induced vibration; PIV; Oscillating square cylinder; Wake structure; Corner radius |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
JMST Editorial Office: #702 KSTC New Bldg, 22 7-gil, Teheran-ro, Gangnam-gu, Seoul 06130, Korea
TEL: +82-2-501-3605, E-mail: editorial@j-mst.org |
JMST Production Office: #702 KSTC New Bldg, 22 7-gil, Teheran-ro, Gangnam-gu, Seoul 06130, Korea
TEL: +82-2-501-6056, FAX: +82-2-501-3649, E-mail: editorial@j-mst.org |
|
|
|
|