Published Papers
     Search Papers (Springer,
   After 2008)
     Search Papers (Dbpia,
   Until 2007)
     Search Papers (JMST
   own data base)
       - Classification By Year   
       - Classification By Topic
     Special Issues
   
           
   
 
 
Subject Keyword Abstract Author
 
 
Optimum tool path generation for 2.5D direction-parallel milling with incomplete mesh model

Hyun-Chul Kim
The Journal of Mechanical Science and Technology, vol. 24, no. 5, pp.1019-1027, 2010

Abstract : Many mechanical parts are manufactured by milling machines. Hence, geometrically efficient algorithms for tool path generation, along with physical considerations for better machining productivity with guaranteed machining safety, are the most important issues in milling. In this paper, an optimized path generation algorithm for direction-parallel milling, a process commonly used in the roughing stage as well as the finishing stage and based on an incomplete 2-manifold mesh model, namely, an inexact polyhedron widely used in recent commercialized CAM software systems, is presented. First of all, a geometrically efficient tool path generation algorithm using an intersection points-graph is introduced. Although the tool paths obtained from geometric information have been successful in forming desired shapes, physical process concerns such as cutting forces and chatters have seldom been considered. In order to cope with these problems, an optimized tool path that maintains a constant MRR for constant cutting forces and avoidance of chatter vibrations, is introduced, and verified experimental results are presented. Additional tool path segments are appended to the basic tool path by means of a pixel-based simulation technique. The algorithm was implemented for two-dimensional contiguous end milling operations with flat end mills, and cutting tests measured the spindle current, which reflects machining characteristics, to verify the proposed method.

Keyword : 2.5D milling; Constant cutting force; Direction-parallel tool path; Material removal rate

 
 
 
JMST Editorial Office: #702 KSTC New Bldg, 22 7-gil, Teheran-ro, Gangnam-gu, Seoul 06130, Korea
TEL: +82-2-501-3605, E-mail: editorial@j-mst.org
JMST Production Office: #702 KSTC New Bldg, 22 7-gil, Teheran-ro, Gangnam-gu, Seoul 06130, Korea
TEL: +82-2-501-6056, FAX: +82-2-501-3649, E-mail: editorial@j-mst.org