Published Papers
     Search Papers (Springer,
   After 2008)
     Search Papers (Dbpia,
   Until 2007)
     Search Papers (JMST
   own data base)
       - Classification By Year   
       - Classification By Topic
     Special Issues
   
           
   
 
 
Subject Keyword Abstract Author
 
 
Flank wear regulation using artificial neural networks

Danko Brezak, Dubravko Majetic, Toma Udiljak, Josip Kasac
The Journal of Mechanical Science and Technology, vol. 24, no. 5, pp.1041-1052, 2010

Abstract : Tool wear regulation highly influences product quality and the safety and productivity of machining processes. Hence, it is one of the most important elements in the supervisory control of machine tools. The development of this type of machine tool adaptive control is practically at its infancy because there are still no industrial solutions concerning robust, reliable, and highly precise continuous tool wear estimators. Therefore, this paper primarily aims at the determination of a tool wear regulation model that can ensure the maximum allowed amount of tool wear rate within a predefined machining time, while simultaneously maintaining a high level of process productivity. The proposed model is structured using Radial Basis Function Neural Network controller and Modified Dynamical Neural Network filter. It is analysed using an analytical tool wear model with experimentally adjusted parameters.

Keyword : Control; Machining; Neural network; Productivity maximisation; Tool wear regulation

 
 
 
JMST Editorial Office: #702 KSTC New Bldg, 22 7-gil, Teheran-ro, Gangnam-gu, Seoul 06130, Korea
TEL: +82-2-501-3605, E-mail: editorial@j-mst.org
JMST Production Office: #702 KSTC New Bldg, 22 7-gil, Teheran-ro, Gangnam-gu, Seoul 06130, Korea
TEL: +82-2-501-6056, FAX: +82-2-501-3649, E-mail: editorial@j-mst.org