Published Papers
     Search Papers (Springer,
   After 2008)
     Search Papers (Dbpia,
   Until 2007)
     Search Papers (JMST
   own data base)
       - Classification By Year   
       - Classification By Topic
     Special Issues
   
           
   
 
 
Subject Keyword Abstract Author
 
 
Semi-analytical solution of magneto-thermo-elastic stresses for functionally graded variable thickness rotating disks

A. Ghorbanpour Arani*, A. Loghman, A. R. Shajari and S. Amir
The Journal of Mechanical Science and Technology, vol. 24, no. 10, pp.2107-2117, 2010

Abstract : In this paper, a semi-analytical solution for magneto-thermo-elastic problem in functionally graded (FG) hollow rotating disks with variable thickness placed in uniform magnetic and thermal fields is presented. Stresses and perturbation of magnetic field vector in FG rotating disks are determined using infinitesimal theory of magneto-thermo-elasticity under plane stress conditions. The material properties except Poisson¡¯s ratio are modeled as power-law distribution of volume fraction. The profile of disk thickness is assumed to be a parabolic function of radius. The non-dimensional distribution of temperature, displacement, stresses and perturbation of magnetic field vector throughout radius are shown. Effects of material grading index, geometry of the disk and magnetic field on the stress and displacement fields are investigated. The results of stresses and radial displacements for two different boundary conditions with and without the effect of magnetic field are compared for a FG rotating disk with concave thickness profile. It has been found that imposing a magnetic field significantly decreases tensile circumferential stresses. Therefore the fatigue life of the disk will be significantly improved by applying the magnetic field. Results of this investigation could be applied for optimum design of FG hollow rotating disks with variable thickness.

Keyword : FGM; Magneto-thermo-elastic; Hollow rotating disk; Perturbation of magnetic field vector; Plane stress; Variable thickness

 
 
 
JMST Editorial Office: #702 KSTC New Bldg, 22 7-gil, Teheran-ro, Gangnam-gu, Seoul 06130, Korea
TEL: +82-2-501-3605, E-mail: editorial@j-mst.org
JMST Production Office: #702 KSTC New Bldg, 22 7-gil, Teheran-ro, Gangnam-gu, Seoul 06130, Korea
TEL: +82-2-501-6056, FAX: +82-2-501-3649, E-mail: editorial@j-mst.org