Published Papers
     Search Papers (Springer,
   After 2008)
     Search Papers (Dbpia,
   Until 2007)
     Search Papers (JMST
   own data base)
       - Classification By Year   
       - Classification By Topic
     Special Issues
   
           
   
 
 
Subject Keyword Abstract Author
 
 
Interaction between laser-induced plasma/vapor and arc plasma during fiber laser-MIG hybrid welding

Jun Wang, Chunming Wang*, Xuanxuan Meng, Xiyuan Hu, Yangchun Yu and Shengfu Yu
The Journal of Mechanical Science and Technology, vol. 25, no. 6, pp.1529-1533, 2011

Abstract : Hybrid plasma is an important physical phenomenon in fiber laser-MIG hybrid welding. It greatly affects the stability of the process, the quality of the weld, and the efficiency of energy coupling. In this paper, clear and direct proofs of these characteristics are presented through high-speed video images. Spectroscopic analysis is used to describe the characterization of hybrid plasma. The hybrid plasma forms a curved channel between the welding wire and the keyhole during the fiber laser-MIG hybrid welding process. The curved channel is composed of two parts. The laser-induced plasma/vapor expands due to the combined effect of the laser and the MIG arc, forming an ionization duct, which is one part of the curved channel. The resistance of the duct is smaller than that of other locations because of the rise in electrical conductivity. Consequently, the electrical arc is guided through the duct to the surface of the material, which is the other part of the curved channel. The spectral intensities of metal elements in laser-MIG hybrid welding are much stronger than those in MIGonly welding, whereas the spectral intensities of shielding gas element in laser-MIG hybrid welding are much weaker.

Keyword : Curved channel; Fiber plasma; Hybrid plasma; High-speed video image; Laser-MIG hybrid welding

 
 
 
 
 
JMST Editorial Office: #702 KSTC New Bldg, 22 7-gil, Teheran-ro, Gangnam-gu, Seoul 06130, Korea
TEL: +82-2-501-3605, E-mail: editorial@j-mst.org
JMST Production Office: #702 KSTC New Bldg, 22 7-gil, Teheran-ro, Gangnam-gu, Seoul 06130, Korea
TEL: +82-2-501-6056, FAX: +82-2-501-3649, E-mail: editorial@j-mst.org