Published Papers
     Search Papers (Springer,
   After 2008)
     Search Papers (Dbpia,
   Until 2007)
     Search Papers (JMST
   own data base)
       - Classification By Year   
       - Classification By Topic
     Special Issues
   
           
   
 
 
Subject Keyword Abstract Author
 
 
Analysis of performance deterioration of a micro gas turbine and the use of neural network for predicting deteriorated component characteristics

Jae Eun Yoon
The Journal of Mechanical Science and Technology, vol. 22, no. 12, pp.2516-2525, 2008

Abstract : Deteriorated performance data of a micro gas turbine were generated and the artificial neural network was applied to predict the deteriorated component characteristics. A program to simulate operation of a micro gas turbine was set up and deterioration of each component (compressor, turbine and recuperator) was modeled by changes in the component characteristic parameters such as compressor and turbine efficiency, their flow capacities and recuperator effectiveness and pressure drop. Single and double faults (degradation of single and two parameters) were simulated. The neural network was trained with a majority of the generated deterioration data. Then, the remaining data were used to check the predictability of the neural network. Given measurable performance parameters as inputs to the neural network, characteristic parameters of each component were predicted and compared with original data. The neural network produced sufficiently accurate prediction. Using a smaller number of input parameters decreased prediction accuracy. However, an acceptable accuracy was observed even without information on several input parameters.

Keyword : Micro gas turbine; Performance deterioration; Characteristic parameters; Performance parameters; Diagnosis; Neural network

 
 
 
 
 
JMST Editorial Office: #702 KSTC New Bldg, 22 7-gil, Teheran-ro, Gangnam-gu, Seoul 06130, Korea
TEL: +82-2-501-3605, E-mail: editorial@j-mst.org
JMST Production Office: #702 KSTC New Bldg, 22 7-gil, Teheran-ro, Gangnam-gu, Seoul 06130, Korea
TEL: +82-2-501-6056, FAX: +82-2-501-3649, E-mail: editorial@j-mst.org